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The concept of a spin current is a useful tool in understanding spin transport in hybrid systems but its very
definition is problematic in systems where spin-orbit coupling effects are strong. In the absence of spin-
dependent scattering, the spin current remains well defined. We here propose a method for generating pure spin
currents in a normal metal where the spin current consequently does not suffer from the aforementioned
problems pertaining to its very definition or spin-relaxation processes. More specifically, we show how an
unpolarized incident charge current can induce a pure transverse spin current by means of scattering at a
normal metal/two-dimensional electron gas interface. This occurs for both Rashba and Dresselhaus spin-orbit
coupling. An experimental setup for observation of this effect is proposed.
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I. INTRODUCTION

The study of spin transport in hybrid systems with mag-
netic elements is of crucial importance both in order to un-
derstand the basic physics of spin transport and to find new
functional devices emerging from fundamental research.1–8

In this context, the idea of a spin current is a natural exten-
sion of the traditional charge current, and is a heavily em-
ployed tool in the characterization of spin transport. The
most straightforward definition of a spin current is, in anal-
ogy with the charge current, simply the spin carried by a
particle times its velocity. However, there are subtleties as-
sociated with this definition, in particular, when spin-orbit
coupling is present in the system.9,10 To illustrate this point,
consider the general continuity equation for spin density S,

�tS + � · jS = T . �1�

Here, jS is the spin current whereas T represents a spin-sink/
source term that causes jS to be nonconserved. For instance,
the effect of spin-transfer torque, where a spin current is
absorbed by a magnetic order parameter, may be incorpo-
rated into T. The term T will in general be present in systems
where the spin operator does not commute with the Hamil-
tonian. Now, the problem with the above equation is that one
may absorb a portion, or in fact the entirety, of T into the
definition of the spin current by writing T=−� ·P, which
holds for systems where the average spin-torque density van-
ishes in the bulk. The continuity equation then takes the form
�S
�t +� · jS�=0, rendering the spin current jS�= jS+P to be a con-
served quantity, as opposed to jS. Therefore, there is an in-
herent ambiguity in the spin current since one may define it
in an arbitrary way by combining elements of jS and T. At the
same time, it is clear that in a normal metallic region without
any spin-sink/source term, the conventional definition of the
spin current serves well and is conserved. This fact will fea-
ture prominently below.

The influence of spin-orbit coupling on a spin current is
accompanied by welcomed as well as troublesome effects.
On the one hand, the influence is beneficial in the sense that
it offers a way of manipulating the spin current of a system

due to the coupling between the spin of the charge carriers
and an electric field. On the other hand, it is disadvantageous
since it breaks conservation of spin and renders it a poor
quantum number. It would be highly desirable to find a way
of utilizing the first aspect of spin-orbit coupling and at the
same time circumvent the difficulty associated with the latter.
Here, we propose a way to achieve precisely this.

The experimental setup we have in mind is shown in Fig.
1. We assume that a charge current, which may or may not be
spin polarized, flows into a normal metallic region that is
sandwiched between the polarizing ferromagnet and a mate-
rial with strong spin-orbit coupling, e.g., a two-dimensional
electron gas �2DEG�. It should be noted that real ferromag-
nets do not act as perfect spin polarizers, but it is neverthe-
less instructive to consider how the transport of charge and
spin is influenced by a polarization of the incident current,
similarly to Ref. 11 in the context of spin-transfer torque. As
we shall see, the most interesting effects occur when the
incident current is unpolarized, rendering the spin-polarizer
obsolete. The chief motivation for including the polarizer is
thus simply to gain a physical understanding of how the spin
polarization interacts with the spin-orbit coupling present in
the 2DEG region.

Although this setup is certainly simple, it offers some
highly interesting possibilities with regard to the spin cur-
rents flowing in the system. The crucial aspect is the scatter-
ing taking place at the interface between the normal region
and the region with spin-orbit coupling. We will show how
the scattering stemming from the spin-orbit coupling gener-
ates transverse currents flowing in the normal region. Since
these currents flow in the normal region, they are not subject
to the difficulties associated with either the definition of the
spin current or the spin relaxation length hampered by spin-
orbit coupling. Moreover, we find that these currents are
highly sensitive to the spin orientation of the incoming cur-
rent, i.e., the polarization direction � in the ferromagnet. In
fact, the transverse charge current vanishes completely when
�=� /2 for a Rashba-type spin-orbit coupling, regardless of
the other parameters in the problem. The transverse spin cur-
rent, however, remains nonzero. Interestingly, we find that
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for both Rashba and Dresselhaus spin-orbit coupling, a pure
transverse spin current is generated in the normal metal
when the incident current is completely unpolarized, i.e.,
without the polarizing ferromagnet in Fig. 1. This suggests
that the charge- and spin-reflected currents induced in the
normal metal region benefit from three major advantages: �i�
the spin current is conserved and its definition is unambigu-
ous, �ii� the spin relaxation length is not influenced by spin-
orbit coupling since it is absent in the normal region, and �iii�
the charge and spin currents may be controlled in a well-
defined way simply by adjusting the magnetization direction
of the polarizing ferromagnet. Thus, the environment where
the charge and spin currents of interest propagate �normal
metal region� is nonhostile toward spin while the control
parameters tuning these currents are located in a different
part of the system �the ferromagnet and the material with
spin-orbit coupling� than where the actual currents propa-
gate. This greatly facilitates the opportunity to exert control
over the spin current. It should be mentioned that in the
context of mesoscopic spintronics, it is in general desirable
and thus routine to consider leads without spin-orbit cou-
pling in order to characterize spin transport in an unproblem-
atic way.

II. THEORY

To address the above findings in a quantitative way, we
employ a scattering matrix approach and calculate the result-

ing charge and spin currents in the system when a current
bias is applied in the x direction. The spin current is in gen-
eral a tensor since it has a direction of flow in real space and
a polarization in spin space. In the normal metal �N� region,
we may write

jS = Im��† � � �̂��/�2mN� , �2�

where � is the tensor product between the gradient operator
and the spin operator. In order to evaluate the spin current,
we need to construct the scattering states partaking in the
transport processes. The quasiparticle states are obtained by
solving the matrix equation which diagonalizes the Hamil-
tonian, namely,

�Ĥ0�x� − h�x��̂z + ��x��ky�̂x − kx�̂y��� = �� �3�

with Ĥ0= �k2 / �2m�x��−��1̂. The effective electron mass
m�x� is assumed to be different in the normal metal and
2DEG regions. We have here taken into account the possi-
bility of a magnetization in the region with spin-orbit cou-
pling, assuming that it points along the z direction. The fol-
lowing derivations are made under the assumption of a spin-
orbit coupling of the Rashba-type �as employed in Eq. �3��
but the procedure is identical for a Dresselhaus-type Hamil-
tonian where the spin-orbit coupling term reads ��ky�̂y
−kx�̂x�. Similar Hamiltonians were considered also in Refs.
12 and 13. In order to gain some basic understanding of the
role of spin-orbit coupling in our setup, we consider a
N/2DEG junction with an incident spin current at Fermi level
from the N side. The interface is located at x=0, and hence
h�x�=h��x�, ��x�=���x�, with ��x� the Heaviside step
function. The incident spin current is assumed to be polar-
ized in the y-z plane with an angle � relative to the z axis.
Solving for the eigenvalues and eigenvectors of Eq. �3�, we
obtain the following wave functions,

�N = �� c

is
	eik	x + 
r↑� c

is
	 + r↓�is

c
	�e−ik	x�eikyy �4�

on the N side. It should be noted that considering both inci-
dent waves with �=0 and �=� effectively gives an unpo-
larized incident current, which we shall comment on later.
On the 2DEG side, we have,

�2DEG = �t↑N↑� 1

u↑
	eikx

↑x + t↓N↓�u↓

1
	eikx

↓x�eikyy . �5�

Above, we have defined c=cos�� /2�, s=sin�� /2�, and k	

=kF cos 	, where kF=2mN�N is the Fermi wave vector on
the N side and 	 is the angle of incidence. We have intro-
duced the quantities

kx
� = �k��2 − kF

2 sin2 	 , �6�

in addition to N�= �1+ �u�
2 ��−1/2 and

k� = �2m2DEG�2DEG + 2m2DEG
2 �2

+ 2m2DEG�h2 + m2DEG
2 �4 + 2m2DEG�2DEG�2�1/2,
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FIG. 1. �Color online� A current bias is applied to a trilayer
consisting of a polarizing ferromagnet, a normal metal, and finally a
material with spin-orbit coupling, e.g., a 2DEG. Due to reflection at
the second interface bordering on the material with spin-orbit cou-
pling, transverse charge and spin currents are induced in the normal
metal region. The magnetization in the polarizing ferromagnet is
misaligned an angle � from the z axis while the angle of incidence
is denoted 	. If the incident current is unpolarized, i.e., without the
polarizing ferromagnet, a pure transverse spin current is generated
by means of spin reflection off the barrier.
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u� = −
���ky − i�kx

��

h + �2�k��2 + h2
. �7�

All wave functions are normalized to unity. For angles of
incidence that satisfy sin 	
k� /kF, the transmitted electrons
become evanescent. To ensure their decay in the 2DEG re-
gion, one should then set kx

�=Re�kx
��+ i�Im�kx

���. The scatter-
ing coefficients �r� , t�� are obtained by using the boundary
conditions at the interface

�rm�x�2DEG�x,y� − �x�N�x,y���x=0 = �̂�N�0,y� ,

�N�0,y� = �2DEG�0,y�, �̂ = �2mNV01̂ + mN�i�̂y� . �8�

Above, rm=mN /m2DEG denotes the ratio of the electron
masses in the N and 2DEG regions. Employing the notation
of Blonder-Tinkham-Klapwijk theory,14 we define the di-
mensionless parameter Z=2mNV0 /kF to characterize the in-
terface transparency. The higher the value of Z, the stronger
the interface barrier potential. An ideal interface is character-
ized by Z=0. The actual barrier potential is modeled as a

delta function and is proportional to V0. Note that the bound-
ary conditions properly take into account the off-diagonal
elements in the velocity operator, as demanded in the pres-
ence of spin-orbit coupling.15 The transverse charge current
jQ and spin current jS= �jS

x , jS
y , jS

z� are finally obtained by in-
tegrating over all angles of incidence. Introducing a general-

ized current vector j= �jQ , jS� and �̂= �1̂ , �̂ /2�, we may write
the transverse current as

j = �
−�/2

�/2

d	 Im��†�y�̂��/mN. �9�

Let us underline here that Eq. �9� naturally accounts for the
contribution from different angles of incidence to the trans-
verse current. In Eq. �9�, the derivation operator �y brings a
factor sin 	 to the integrand which thus ensures that angles of
incidence close to �� /2 contribute strongly to the transverse
current, as they should. If we had been concerned with the
spin current flowing perpendicular to the barrier, the replace-
ment �y→�x would have been made, leading to a factor of
cos 	 as usual in that case. In principle, one could also insert
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FIG. 2. �Color online� Plot of the induced transverse charge and spin currents flowing parallel to the barrier in the normal metal region.
We have set �=110−4 and assumed a Rashba-type spin-orbit coupling. For � /�=0.5, the transverse charge current vanishes, which makes
it possible to obtain a pure spin-current signal by controlling the magnetization direction of the polarizing ferromagnet. The transverse
charge current also vanishes when the incident current is unpolarized, i.e., a superposition of �=0 and �=�. This can be verified directly
from the figure. Note that the curves for angles � and ��−�� are degenerate for the x and z polarizations of the spin current.
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a 	-dependent weight factor f�	� inside the integrand of Eq.
�9� which would model a statistical distribution of the incom-
ing particles. For instance, if the experimental geometry dic-
tates that the incident quasiparticles are collimated near 	
=0, one could use f�	�=cos 	. We have checked explicitly
that our results undergo only a minor quantitative change
when including such a weight factor, and we here restrict our
attention to the case without any angular variation in the
statistical distribution, i.e., we have chosen f�	�=1.

III. RESULTS

Let us now discuss our choice of parameters for the physi-
cal quantities entering the model. Unless specifically stated
otherwise, the figures are obtained using the parameter val-
ues that are given below. We have distinguished between the
electron masses and Fermi levels in the normal metal and
2DEG region, as these differ greatly in realistic samples. In
the normal metal region, we use �N=5 eV and the electron
mass mN=0.51 MeV. In the 2DEG region, we set �2DEG
=50 meV with an effective electron mass m2DEG=0.1mN,
i.e., rm=10. We set the spin-orbit coupling parameter to �
=110−4 to model a typical value for a semiconductor.16 We
have investigated numerically the influence of the exchange
field in the 2DEG region and found only minor quantitative
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FIG. 3. �Color online� The transverse currents evaluated at
x /�F=−1.0 as a function of the spin-orbit coupling strength � for
Rashba-type spin-orbit coupling. In all cases, the magnitude of the
current increases with �.
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FIG. 4. �Color online� Plot of the induced transverse charge and spin currents flowing parallel to the barrier in the normal metal region
for a Dresselhaus-type spin-orbit coupling. The transverse charge currents no longer vanishes at � /�=0.5, but for an unpolarized incident
current �superposition of �=0 and �=��, the transverse charge current is absent just as in the Rashba case.
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changes in the results for values up to h /�2DEG=0.5. There-
fore, we shall here focus on the case of a 2DEG without
magnetization, i.e., we set h=0 and consider only the effect
of spin-orbit coupling. To model interface resistance, we set
Z=2mNV0 /kF=3 as a reasonable measure for a rather low
transmissivity interface. The angularly resolved transmission
coefficient T�	� is related to the barrier parameter Z as
T�	�=4 cos2 	 / �4 cos2 	+Z2�. The Fermi-vector mismatch
above may, in principle, be incorporated into a renormalized
barrier potential Z→Z� with Z�
Z, thus lowering the
transmissivity.17

A. Rashba spin-orbit coupling

We first investigate the transverse charge and spin cur-
rents flowing in the y direction when a current bias is applied
to the junction using Eq. �9� with a Rashba-type spin-orbit
coupling. The result is shown in Fig. 2 for several misorien-
tation angles � of the incident current. As seen, the presence
of spin-orbit coupling induces nonzero transverse charge and
spin currents in the normal region. The charge current van-
ishes at � /�=0.5 or if the incident current is completely
unpolarized �i.e., a superposition of �=0 and �=��. This
suggests a remarkable effect: simply by rotating the magne-
tization in the polarizing ferromagnet relative to the spin-
orbit coupling vector that resides in the xy plane, it is pos-
sible to tune the charge and spin currents in the normal metal
region, and, in particular, one can obtain a pure spin-current
signal for � /�=0.5. Both the charge and spin currents dis-
play oscillations and decay to a constant, in general nonzero
value in the bulk of the normal metal region. The oscillations
appear as a result of interference terms of the type
Re�r↑e

−2ik	x� and Im�r↓e
−2ik	x� generated when inserting the

wave function Eq. �4� into Eq. �9�. From these expressions, it
is seen that as �x� grows, the exponent varies more rapidly
with 	, such that the angular averaging in Eq. �9� eventually
completely cancels out the x-dependent terms giving rise to
the oscillations. The magnitude of the oscillations are there-
fore the strongest closest to the barrier �x /�F→0−�. An im-
portant observation is that these transverse currents are not
subject to the inherent problem with spin-orbit coupling re-
lated to the definition of the spin-current or spin-relaxation
processes. We proceed to show that increasing spin-orbit
coupling induces a stronger spin-reflected current, as de-
picted in Fig. 3. In all cases, the magnitude of the current
increases with �.

From Fig. 2, we see that the charge current satisfies
jQ���=−jQ��−��. The exact expressions for the reflection
coefficients are too unwieldy to permit an analytical expres-
sion for jQ��� through solving Eq. �9� by hand but numeri-
cally we find that jQ����cos���. As a result, it follows that
for an incident current which is unpolarized, i.e., by remov-
ing the polarizing ferromagnet, a pure transverse spin current
may again be generated. An unpolarized incident current can
be thought of as a superposition of an incident �=0 and �
=� wave which leads to a total transverse charge current,
thus

jQ�0� + jQ��� = jQ�0� − jQ�� − �� = 0. �10�

The result is therefore a pure transverse spin current. Effec-
tively, this amounts to a conversion from a pure charge cur-

rent flowing in the x̂ direction to a pure spin current flowing
in the ŷ direction. Whereas such a scenario is also found
inside a 2DEG subject to the spin-Hall effect, an important
difference from our results is that in that case, the spin cur-
rent flows in the region where spin-orbit coupling effects are
strong. Therefore, both the definition of the spin current and
its relaxation length become problematic. In our case, both of
these difficulties are avoided since the spin current flows in a
normal metal region by means of reflection off a barrier in
the presence of spin-orbit coupling. The vanishing of the
transverse charge current is understood by realizing that an
injected unpolarized charge current may be viewed as a co-
herent superposition of spin-↑ and spin-↓ electrons with
equal weight. The two contributions are scattered in opposite
directions due to the spin-orbit coupling,18 and thus the net
charge current vanishes whereas the spin current is nonzero.

B. Dresselhaus spin-orbit coupling

Let us also briefly investigate how the transverse charge
and spin currents flowing in the y direction are influenced by
a Dresselhaus-type spin-orbit coupling in the 2DEG region,
in contrast to the Rashba case treated in the previous section.
In Fig. 4, we plot the transverse charge and spin currents
flowing along the barrier. Due to the different structure of the
Dresselhaus spin-orbit coupling compared to the Rashba
type, the x and y polarizations of the spin current change
roles. For the Dresselhaus type, both the y and z polarization
of the spin current are insensitive to a variation in �. Simi-
larly to the Rashba case, however, the magnitude of the
transverse currents all increase with � as shown in Fig. 5. It
should be noted that the x polarization of the spin current
does not vanish completely at � /�=0.5. However, it is
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strongly suppressed compared to the other values of �.

IV. DISCUSSION

The results presented in this paper suggest a method for
obtaining a conversion from charge to spin currents. The
method we propose exploits the possibility of manipulating
the current by means of spin-orbit coupling, whereas it at the
same time renders the spin current immune toward the com-
plicating and adverse effects of spin-orbit coupling with re-
gard to relaxation processes and the very definition of a spin
current. In order to observe the transverse charge-spin cur-
rent separation, one would need to find a way to probe the
presence of a spin flow in the transverse direction. This
could, in principle, be achieved by measuring, for instance,
spin accumulation at the edge of the normal metal wire with
optical technique.7,8

Above, we kept the interface barrier potential fixed at Z
=3, corresponding to a transmission coefficient of about T

�0.3 for normal incidence. To demonstrate that our results
remain qualitatively unaltered upon varying the barrier po-
tential Z, we plot in Fig. 6 the transverse spin currents for an
incident current with �=� /2. For a Rashba-type spin-orbit
coupling, this is equivalent to the vanishing of transverse
charge current, as seen in, e.g., Fig. 2. The role of the barrier
potential Z is seen in Fig. 6 to simply reduce the magnitude
of the spin current and does not influence the results quali-
tatively.

It is also instructive to consider the angularly resolved
transverse currents in order to understand the scattering pro-
cesses on a more microscopic level. The transverse charge
and spin currents are plotted in Fig. 7 as a function of angle
of incidence for a Rashba-type spin-orbit coupling, being
evaluated at x /�F=−1.0. We here focus on the most interest-
ing case � /�=0.5. As seen, both the charge current and the
y polarization of the spin current are antisymmetric around
	=0, leading to a vanishing net current upon performing the
angular integration. In contrast, the x and z polarizations of
the spin current are symmetric around 	=0, yielding a net
contribution to the total current. The specific form of the
spin-orbit coupling potential should also influence the sym-
metry properties. In Fig. 7, we have used a standard Rashba

form with ĤSOC=��ky�̂x−kx�̂y�. In the case of a Dresselhaus

form ĤSOC=��ky�̂y −kx�̂x�, one would expect that the x and
y polarization of the spin current would interchange their
symmetry properties since the two Hamiltonians are related
by the substitution �̂x↔ �̂y. This picture is verified by com-
paring the x and y polarizations of the spin current in Fig. 2
with Fig. 4. The transverse charge current nevertheless re-
mains zero in both cases for an incident unpolarized current.
We comment more on the role of adding a Dresselhaus term

to Ĥ later in this section. Finally, we note that the oscillations
of the currents in Fig. 7 increase in rapidity as �x� increases,
i.e., farther inside the N region. The reason for this is the
previously mentioned interference terms of the type
Re�r↑e

−2ik	x� and Im�r↓e
−2ik	x� in the expression for the cur-

rent.
The assumption of ballistic transport and a sharp interface

at the N/2DEG region is certainly an approximation to real
systems where the 2DEG is often not characterized by the
ballistic regime due to impurity scattering, e.g., in InAs. In-
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creased impurity scattering randomizes the momentum of
scattered particles, which is detrimental to wave functions
that are highly sensitive to the orientation of the momentum
on the Fermi surface. Rashba spin-orbit coupling can be in-
terpreted as a wave-vector-dependent Zeeman field that is
altered dramatically when an electron scatters from one mo-
mentum orientation to another, even if the magnitude of the
momentum remains the same. This type of scattering effec-
tively randomizes the electron spin.

To show that the possibility of obtaining pure transverse
spin currents persists even in the nonballistic transport re-
gime, we consider a situation where both Rashba and
Dresselhaus spin-orbit coupling are present and tuned to be
of equal magnitude by means of proper gating, as discussed
in Refs. 19 and 20. In this case, the scattering eigenvectors
are independent of momentum and thus survive angular av-
eraging over the Fermi surface in the presence of nonmag-
netic impurities. To see this, consider the Hamiltonian

Ĥ = Ĥ0 + �R�ky�̂x − kx�̂y� + �D�ky�̂y − kx�̂x� , �11�

where �R and �D represent the spin-orbit coupling interac-
tion parameter of Rashba and Dresselhaus type, respectively.
In the case where these are equal, �R=�D��, one obtains
the eigenvalues

�� = k2/�2m� − � � 2��ky − kx� , �12�

with belonging eigenvectors

�+ =
1
2�1 − i

2

1
�, �− =

1
2� 1

−
�1 + i�

2
� . �13�

The above wave functions �� are not sensitive to the direc-
tion of momentum. In contrast, the wave functions in Eq. �5�
where a pure Rashba spin-orbit coupling was used are
strongly dependent on the momentum orientation due to the
u� factors. In the present case of combined Rashba
+Dresselhaus spin-orbit coupling, the transverse currents
scattered off the barrier are obtained using a similar frame-
work as described previously. Considering an injected unpo-
larized current, we find that the transverse charge current
again vanishes whereas the x and y components of the spin
current remain. Thus, the method of generating pure spin
currents suggested here should display robustness against
impurity effects, although a more careful investigation of this
matter certainly is warranted.

Some previous works have also investigated spin-
dependent scattering in hybrid structures in the presence of
spin-orbit coupling21–24 as a possible mean of obtaining con-
trollable spin currents. In contrast to our results, however, the
spin currents obtained in these works suffer from all the
problems related to spin currents that we have elaborated on
previously, since the spin current flows in the 2DEG region.
We emphasize that we have demonstrated the possibility of
having a transverse, dissipationless spin current in the ab-
sence of any accompanying charge current. The charge-spin
current separation could also find potential use as a spin fil-
ter. Spin-filtering effects in spin-orbit-coupled systems by se-
lective angular beam injection have been discussed previ-

ously in Ref. 25. However, in previous discussions it has
transpired that any net spin current vanishes when taking into
account all possible angles of incidence. In our case, the spin
current survives the averaging and is thus easier to access
experimentally since angular filtering is a much more diffi-
cult task in quantum electronics than in, for instance, optics.

V. SUMMARY

In summary, we have investigated the transport of charge
and spin in a normal metal/2DEG junction, taking into ac-
count spin polarization of the incident current and magnetic
exchange energy in the 2DEG region. We find that it is pos-
sible to obtain a conversion from a pure charge current to a
pure spin current simply by reflection off the barrier separat-
ing the normal and 2DEG region. More specifically, an inci-
dent unpolarized charge current flowing toward the barrier is
converted into a pure transverse spin current flowing parallel
to the barrier due to spin-dependent scattering off the barrier
induced by the spin-orbit coupling. We emphasize that the
spin current flowing in the normal metal region is unambigu-
ously defined and also rendered insensitive to the adverse
spin-relaxation effects accompanying spin-orbit coupling.
The method we propose to generate a pure spin current in
fact utilizes the desirable properties of spin-orbit coupling
for facilitated control over spin transport while simulta-
neously avoiding the complicating effects of spin-orbit cou-
pling pertaining to spin relaxation and the definition of the
spin current. Moreover, we have studied how the transverse
charge and spin currents can be controlled by spin polarizing
the incident current. It is found that it is possible to tune the
transverse charge current to zero simply by rotating the mag-
netization of the polarizing ferromagnet, thus leaving a pure
spin current flowing parallel to the barrier. Our results may
open up perspectives for the generation and control over pure
spin currents.
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APPENDIX: SPIN-DENSITY CONTINUITY EQUATION

We here briefly outline the derivation of the continuity
equation of the spin density, setting �=c=1. We consider the
generic Hamiltonian

Ĥ =
p2

2m
+ ĤSOC + ĤFM + V�x� ,

ĤSOC = A�p��̂x − B�p��̂y, ĤFM = − �̂ · h , �A1�

with V�x� containing all potential energy terms. Defining the
spin density as

S = �†ŝ� , �A2�

where ŝ= �̂ /2, we obtain

PURE SPIN CURRENT GENERATED BY REFLECTION AT… PHYSICAL REVIEW B 81, 075312 �2010�

075312-7



i�tS = i�i�Ĥ��†ŝ� − i�†ŝĤ�� = 2i Im��†ŝĤ�� �A3�

by means of the Schrödinger equation i�t�= Ĥ�. Making use
of the above equations, we obtain

�tS + � · jS = TSOC + TFM, �A4�

where jS is the conventional spin current

jS = Im��† � � �̂��/�2m� . �A5�

Moreover, we have defined

TSOC = Im��†�̂ĤSOC��, TFM = Re��†��̂  h��� .

�A6�

In particular, the term TFM may be interpreted as a spin-
transfer torque to the magnetic order parameter, leading to a
nonconserved spin current even in the absence of spin-orbit
coupling. The above treatment is valid both for Rashba- and
Dresselhaus-type spin-orbit coupling.
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